 Cheng, M. C. N., Chun, S., Feigin, B., Ferrari, F., Gukov, S., Harrison, S. M., & Passaro, D. (2024). 3-Manifolds and VOA Characters. Communications in Mathematical Physics, 405(2), Article 44. https://doi.org/10.1007/s00220-023-04889-1 [details]
Cheng, M. C. N., Chun, S., Feigin, B., Ferrari, F., Gukov, S., Harrison, S. M., & Passaro, D. (2024). 3-Manifolds and VOA Characters. Communications in Mathematical Physics, 405(2), Article 44. https://doi.org/10.1007/s00220-023-04889-1 [details] Cheng, M. C. N., Coman, I., Passaro, D., & Sgroi, G. (2024). Quantum Modular ẐG-Invariants. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 20, Article 18. https://doi.org/10.3842/SIGMA.2024.018 [details]
Cheng, M. C. N., Coman, I., Passaro, D., & Sgroi, G. (2024). Quantum Modular ẐG-Invariants. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 20, Article 18. https://doi.org/10.3842/SIGMA.2024.018 [details] Cheng, M. C. N., Duncan, J. F. R., & Mertens, M. H. (2023). Class numbers, cyclic simple groups, and arithmetic. Journal of the London Mathematical Society, 108(1), 238-272. https://doi.org/10.1112/jlms.12744 [details]
Cheng, M. C. N., Duncan, J. F. R., & Mertens, M. H. (2023). Class numbers, cyclic simple groups, and arithmetic. Journal of the London Mathematical Society, 108(1), 238-272. https://doi.org/10.1112/jlms.12744 [details] Gerdes, M., de Haan, P., Rainone, C., Bondesan, R., & Cheng, M. C. N. (2023). Learning lattice quantum field theories with equivariant continuous flows. SciPost Physics, 15(6), Article 238. https://doi.org/10.21468/SciPostPhys.15.6.238 [details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R., & Cheng, M. C. N. (2023). Learning lattice quantum field theories with equivariant continuous flows. SciPost Physics, 15(6), Article 238. https://doi.org/10.21468/SciPostPhys.15.6.238 [details] Cheng, M. C. N., Moore, G. W., & Paquette, N. M. (2022). Flux vacua: A voluminous recount. Communications in Number Theory and Physics, 16(4), 761-800. https://doi.org/10.48550/arXiv.1909.04666, https://doi.org/10.4310/CNTP.2022.v16.n4.a4 [details]
Cheng, M. C. N., Moore, G. W., & Paquette, N. M. (2022). Flux vacua: A voluminous recount. Communications in Number Theory and Physics, 16(4), 761-800. https://doi.org/10.48550/arXiv.1909.04666, https://doi.org/10.4310/CNTP.2022.v16.n4.a4 [details] Anagiannis, V., & Cheng, M. C. N. (2021). Entangled q-convolutional neural nets. Machine Learning: Science and Technology, 2(4), Article 045026. https://doi.org/10.1088/2632-2153/ac2800 [details]
Anagiannis, V., & Cheng, M. C. N. (2021). Entangled q-convolutional neural nets. Machine Learning: Science and Technology, 2(4), Article 045026. https://doi.org/10.1088/2632-2153/ac2800 [details] Anagiannis, V., Cheng, C. N., Duncan, J., & Volpato, R. (2021). Vertex operator superalgebra/sigma model correspondences: The four-torus case. Progress of Theoretical and Experimental Physics, 2021(8), Article 08B102. https://doi.org/10.1093/ptep/ptab095 [details]
Anagiannis, V., Cheng, C. N., Duncan, J., & Volpato, R. (2021). Vertex operator superalgebra/sigma model correspondences: The four-torus case. Progress of Theoretical and Experimental Physics, 2021(8), Article 08B102. https://doi.org/10.1093/ptep/ptab095 [details] Anagiannis, V., Cheng, M. C. N., & Harrison, S. M. (2019). K3 Elliptic Genus and an Umbral Moonshine Module. Communications in Mathematical Physics, 366(2), 647-680. https://doi.org/10.1007/s00220-019-03314-w [details]
Anagiannis, V., Cheng, M. C. N., & Harrison, S. M. (2019). K3 Elliptic Genus and an Umbral Moonshine Module. Communications in Mathematical Physics, 366(2), 647-680. https://doi.org/10.1007/s00220-019-03314-w [details] Cheng, M. C. N., Ferrari, F., & Sgroi, G. (2019). Three-manifold quantum invariants and mock theta functions. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 378(2163), Article 0439. https://doi.org/10.1098/rsta.2018.0439 [details]
Cheng, M. C. N., Ferrari, F., & Sgroi, G. (2019). Three-manifold quantum invariants and mock theta functions. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 378(2163), Article 0439. https://doi.org/10.1098/rsta.2018.0439 [details] Cheng, M. C. N., de Lange, P., & Whalen, D. P. Z. (2019). Generalised umbral moonshine. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 15, Article 014. https://doi.org/10.3842/SIGMA.2019.014 [details]
Cheng, M. C. N., de Lange, P., & Whalen, D. P. Z. (2019). Generalised umbral moonshine. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 15, Article 014. https://doi.org/10.3842/SIGMA.2019.014 [details] Cheng, M. CN., Chun, S., Ferrari, F., Gukov, S., & Harrison, S. M. (2019). 3d modularity. Journal of High Energy Physics, 2019(10), Article 10. https://doi.org/10.1007/JHEP10(2019)010 [details]
Cheng, M. CN., Chun, S., Ferrari, F., Gukov, S., & Harrison, S. M. (2019). 3d modularity. Journal of High Energy Physics, 2019(10), Article 10. https://doi.org/10.1007/JHEP10(2019)010 [details] Cheng, M. C. N., Duncan, J. F. R., Harrison, S. M., Harvey, J. A., Kachru, S., & Rayhaun, B. C. (2018). Attractive strings and five-branes, skew-holomorphic Jacobi forms and moonshine. Journal of High Energy Physics, 2018(7), Article 130. https://doi.org/10.1007/JHEP07(2018)130 [details]
Cheng, M. C. N., Duncan, J. F. R., Harrison, S. M., Harvey, J. A., Kachru, S., & Rayhaun, B. C. (2018). Attractive strings and five-branes, skew-holomorphic Jacobi forms and moonshine. Journal of High Energy Physics, 2018(7), Article 130. https://doi.org/10.1007/JHEP07(2018)130 [details] Cheng, M. C. N., Harrison, S. M., Volpato, R., & Zimet, M. (2018). K3 string theory, lattices and moonshine. Research in Mathematical Sciences, 5(3), Article 32. https://doi.org/10.1007/s40687-018-0150-4 [details]
Cheng, M. C. N., Harrison, S. M., Volpato, R., & Zimet, M. (2018). K3 string theory, lattices and moonshine. Research in Mathematical Sciences, 5(3), Article 32. https://doi.org/10.1007/s40687-018-0150-4 [details] Cheng, M. C. N., Ferrari, F., Harrison, S. M., & Paquette, N. M. (2017). Landau-Ginzburg orbifolds and symmetries of K3 CFTs. Journal of High Energy Physics, 2017(1), Article 46. https://doi.org/10.1007/JHEP01(2017)046 [details]
Cheng, M. C. N., Ferrari, F., Harrison, S. M., & Paquette, N. M. (2017). Landau-Ginzburg orbifolds and symmetries of K3 CFTs. Journal of High Energy Physics, 2017(1), Article 46. https://doi.org/10.1007/JHEP01(2017)046 [details] Benjamin, N., Cheng, M. C. N., Kachru, S., Moore, G. W., & Paquette, N. M. (2016). Elliptic Genera and 3d Gravity. Annales Henri Poincaré, 17(10), 2623-2662. https://doi.org/10.1007/s00023-016-0469-6 [details]
Benjamin, N., Cheng, M. C. N., Kachru, S., Moore, G. W., & Paquette, N. M. (2016). Elliptic Genera and 3d Gravity. Annales Henri Poincaré, 17(10), 2623-2662. https://doi.org/10.1007/s00023-016-0469-6 [details] Cheng, M. C. N., & Harrison, S. (2015). Umbral moonshine and K3 surfaces. Communications in Mathematical Physics, 339(1), 221-261. https://doi.org/10.1007/s00220-015-2398-5 [details]
Cheng, M. C. N., & Harrison, S. (2015). Umbral moonshine and K3 surfaces. Communications in Mathematical Physics, 339(1), 221-261. https://doi.org/10.1007/s00220-015-2398-5 [details] Cheng, M. C. N., Dong, X., Duncan, J. F. R., Harrison, S., Kachru, S., & Wrase, T. (2015). Mock modular Mathieu moonshine modules. Research in the Mathematical Sciences, 2(1), Article 13. https://doi.org/10.1186/s40687-015-0034-9 [details]
Cheng, M. C. N., Dong, X., Duncan, J. F. R., Harrison, S., Kachru, S., & Wrase, T. (2015). Mock modular Mathieu moonshine modules. Research in the Mathematical Sciences, 2(1), Article 13. https://doi.org/10.1186/s40687-015-0034-9 [details] Cheng, M. C. N., Duncan, J. F. R., & Harvey, J. A. (2014). Umbral moonshine and the Niemeier lattices. Research in the Mathematical Sciences, 1, 3. https://doi.org/10.1186/2197-9847-1-3 [details]
Cheng, M. C. N., Duncan, J. F. R., & Harvey, J. A. (2014). Umbral moonshine and the Niemeier lattices. Research in the Mathematical Sciences, 1, 3. https://doi.org/10.1186/2197-9847-1-3 [details] Aganagic, M., Cheng, M. C. N., Dijkgraaf, R., Kreft, D., & Vafa, C. (2012). Quantum Geometry of Refined Topological Strings. The Journal of High Energy Physics, 2012(11), Article 019. https://doi.org/10.1007/JHEP11(2012)019 [details]
Aganagic, M., Cheng, M. C. N., Dijkgraaf, R., Kreft, D., & Vafa, C. (2012). Quantum Geometry of Refined Topological Strings. The Journal of High Energy Physics, 2012(11), Article 019. https://doi.org/10.1007/JHEP11(2012)019 [details] Cheng, M. C. N., Dijkgraaf, R., & Vafa, C. (2011). Non-perturbative topological strings and conformal blocks. The Journal of High Energy Physics, 2011(9), 022. Article 22. https://doi.org/10.1007/JHEP09(2011)022 [details]
Cheng, M. C. N., Dijkgraaf, R., & Vafa, C. (2011). Non-perturbative topological strings and conformal blocks. The Journal of High Energy Physics, 2011(9), 022. Article 22. https://doi.org/10.1007/JHEP09(2011)022 [details] Cheng, M. C. N., & Verlinde, E. P. (2008). Wall crossing, discrete attractor flow and Borcherds algebra. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 4, Article 068. https://doi.org/10.3842/SIGMA.2008.068 [details]
Cheng, M. C. N., & Verlinde, E. P. (2008). Wall crossing, discrete attractor flow and Borcherds algebra. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 4, Article 068. https://doi.org/10.3842/SIGMA.2008.068 [details]