For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Anagiannis, V., Cheng, C. N., Duncan, J., & Volpato, R. (2021). Vertex operator superalgebra/sigma model correspondences: The four-torus case. Progress of Theoretical and Experimental Physics, 2021(8), [08B102]. https://doi.org/10.1093/ptep/ptab095[details]
Anagiannis, V., Cheng, M. C. N., & Harrison, S. M. (2019). K3 Elliptic Genus and an Umbral Moonshine Module. Communications in Mathematical Physics, 366(2), 647-680. https://doi.org/10.1007/s00220-019-03314-w[details]
Cheng, M. C. N., & Duncan, J. F. R. (2019). Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules. Communications in Mathematical Physics, 370(3), 759-780. https://doi.org/10.1007/s00220-019-03540-2[details]
Cheng, M. C. N., Ferrari, F., & Sgroi, G. (2019). Three-manifold quantum invariants and mock theta functions. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 378(2163), [0439]. https://doi.org/10.1098/rsta.2018.0439[details]
Cheng, M. C. N., de Lange, P., & Whalen, D. P. Z. (2019). Generalised umbral moonshine. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 15, [014]. https://doi.org/10.3842/SIGMA.2019.014[details]
Cheng, M. C. N., Duncan, J. F. R., & Harvey, J. A. (2018). Weight one Jacobi forms and umbral moonshine. Journal of Physics A: Mathematical and Theoretical, 51(10), [104002]. https://doi.org/10.1088/1751-8121/aaa819[details]
Cheng, M. C. N., Duncan, J. F. R., Harrison, S. M., Harvey, J. A., Kachru, S., & Rayhaun, B. C. (2018). Attractive strings and five-branes, skew-holomorphic Jacobi forms and moonshine. Journal of High Energy Physics, 2018(7), [130]. https://doi.org/10.1007/JHEP07(2018)130[details]
Cheng, M. C. N., Harrison, S. M., Volpato, R., & Zimet, M. (2018). K3 string theory, lattices and moonshine. Research in Mathematical Sciences, 5(3), [32]. https://doi.org/10.1007/s40687-018-0150-4[details]
Cheng, M. C. N., Duncan, J. F. R., Harrison, S. M., & Kachru, S. (2017). Equivariant K3 invariants. Communications in Number Theory and Physics, 11(1), 41-72. https://doi.org/10.4310/CNTP.2017.v11.n1.a2[details]
Cheng, M. C. N., Ferrari, F., Harrison, S. M., & Paquette, N. M. (2017). Landau-Ginzburg orbifolds and symmetries of K3 CFTs. Journal of High Energy Physics, 2017(1), [46]. https://doi.org/10.1007/JHEP01(2017)046[details]
Benjamin, N., Cheng, M. C. N., Kachru, S., Moore, G. W., & Paquette, N. M. (2016). Elliptic Genera and 3d Gravity. Annales Henri Poincaré, 17(10), 2623-2662. https://doi.org/10.1007/s00023-016-0469-6[details]
Cheng, M. C. N., Dong, X., Duncan, J. F. R., Harrison, S., Kachru, S., & Wrase, T. (2015). Mock modular Mathieu moonshine modules. Research in the Mathematical Sciences, 2(1), [13]. https://doi.org/10.1186/s40687-015-0034-9[details]
Cheng, M. C. N., & Duncan, J. F. R. (2014). Rademacher Sums and Rademacher Series. In W. Kohnen, & R. Weissauer (Eds.), Conformal Field Theory, Automorphic Forms and Related Topics : CFT 2011, Heidelberg, September 19-23, 2011 (pp. 143-182). (Contributions in Mathematical Contributions in Mathematical; No. 8). Springer. https://doi.org/10.1007/978-3-662-43831-2_6[details]
Cheng, M. C. N., Duncan, J. F. R., & Harvey, J. A. (2014). Umbral moonshine and the Niemeier lattices. Research in the Mathematical Sciences, 1, 3. https://doi.org/10.1186/2197-9847-1-3[details]
Aganagic, M., Cheng, M. C. N., Dijkgraaf, R., Kreft, D., & Vafa, C. (2012). Quantum Geometry of Refined Topological Strings. The Journal of High Energy Physics, 2012(11), [019]. https://doi.org/10.1007/JHEP11(2012)019[details]
Cheng, M. C. N., Dijkgraaf, R., & Vafa, C. (2011). Non-perturbative topological strings and conformal blocks. The Journal of High Energy Physics, 2011(9), 022. [22]. https://doi.org/10.1007/JHEP09(2011)022[details]
Cheng, M. C. N., & Verlinde, E. P. (2008). Wall crossing, discrete attractor flow and Borcherds algebra. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 4, [068]. https://doi.org/10.3842/SIGMA.2008.068[details]
Cheng, M. (organiser) & Gukov, S. (organiser) (8-3-2019 - 10-3-2019). Modularity and 3-manifolds, Providence. A long-standing problem in quantum topology is to find a function, more precisely a q-series with integer coefficients, such that its limiting values (…) (organising a conference, workshop, ...). https://icerm.brown.edu/events/ht19-2-m3m/#workshopoverview
2008
Cheng, M. C. N. (2008). The spectra of supersymmetric states in string theory. Amsterdam. [details]
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.