For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Aalbers, J., Angevaare, J., Bertone, G. F., Breur, P. A., Brookes, E., Bruenner, S., Colijn, A. P., Decowski, M. P., Di Pede, S., Flierman, M., Gaemers, P., Pierre, M., Pollmann, T., Stevens, A., Wolf, T., & DARWIN Collaboration (2023). A next-generation liquid xenon observatory for dark matter and neutrino physics. Journal of Physics G: Nuclear and Particle Physics, 50(1), [013001]. https://doi.org/10.1088/1361-6471/ac841a[details]
Bertone, G., Buchmueller, O. L., & Cole, P. S. (2023). Perspectives on fundamental cosmology from Low Earth Orbit and the Moon. NPJ Microgravity, 9, [10]. https://doi.org/10.1038/s41526-022-00243-2[details]
Angevaare, J. R., Bertone, G., Colijn, A. P., Decowski, M., & Kavanagh, B. (2022). Complementarity of direct detection experiments in search of light Dark Matter. Journal of Cosmology and Astroparticle Physics, 2022(10), [004]. https://doi.org/10.1088/1475-7516/2022/10/004[details]
Arun, K. G., Bertone, G., Hinderer, T., Nichols, D., Kavanagh, B. J., & LISA collaboration (2022). New horizons for fundamental physics with LISA. Living Reviews in Relativity, 25(1), [4]. https://doi.org/10.1007/s41114-022-00036-9[details]
Baumann, D., Bertone, G., Stout, J., & Tomaselli, G. M. (2022). Sharp Signals of Boson Clouds in Black Hole Binary Inspirals. Physical Review Letters, 128(22), [221102]. https://doi.org/10.1103/PhysRevLett.128.221102[details]
Bernitt, S., Bertone, G., Cardoso, V., Emparan, R., Galatyuk, T., Kurkela, A., Larsen, A-C., Nahrgang, M., Nissanke, S., Pani, P., Porto, R., Riotto, A., & Rosswog, S. (2022). Fundamental Physics in the Gravitational-Wave Era. Nuclear Physics News, 32(1), 16-19. https://doi.org/10.1080/10619127.2021.1988473[details]
Coogan, A., Bertone, G., Gaggero, D., Kavanagh, B. J., & Nichols, D. A. (2022). Measuring the dark matter environments of black hole binaries with gravitational waves. Physical Review D, 105(4), [043009]. https://doi.org/10.1103/PhysRevD.105.043009[details]
Banik, N., Bovy, J., Bertone, G., Erkal, D., & De Boer, T. J. L. (2021). Evidence of a population of dark subhaloes from Gaia and Pan-STARRS observations of the GD-1 stream. Monthly Notices of the Royal Astronomical Society, 502(2), 2364-2380. https://doi.org/10.1093/mnras/stab210[details]
Banik, N., Bovy, J., Bertone, G., Erkal, D., & De Boer, T. J. L. (2021). Novel constraints on the particle nature of dark matter from stellar streams. Journal of Cosmology and Astroparticle Physics, 2021(10), [043]. https://doi.org/10.1088/1475-7516/2021/10/043[details]
Hermans, J., Banik, N., Weniger, C., Bertone, G., & Louppe, G. (2021). Towards constraining warm dark matter with stellar streams through neural simulation-based inference. Monthly Notices of the Royal Astronomical Society, 507(2), 1999-2011. https://doi.org/10.1093/mnras/stab2181[details]
Scarcella, F., Gaggero, D., Connors, R., Manshanden, J., Ricotti, M., & Bertone, G. (2021). Multiwavelength detectability of isolated black holes in the Milky Way. Monthly Notices of the Royal Astronomical Society, 505(3), 4036-4047. https://doi.org/10.1093/mnras/stab1533[details]
2020
Bertone, G., Croon, D., Amin, M. A., Boddy, K. K., Kavanagh, B. J., Mack, K. J., Natarajan, P., Opferkuch, T., Schutz, K., Takhistov, V., Weniger, C., & Yu, T-T. (2020). Gravitational wave probes of dark matter: challenges and opportunities. SciPost Physics Core, 3(2), [007]. https://doi.org/10.21468/SciPostPhysCore.3.2.007[details]
Kavanagh, B. J., Nichols, D. A., Bertone, G., & Gaggero, D. (2020). Detecting dark matter around black holes with gravitational waves: Effects of dark-matter dynamics on the gravitational waveform. Physical Review D, 102(8), [083006]. https://doi.org/10.1103/PhysRevD.102.083006[details]
Weltman, A., Bull, P., Camera, S., Kelley, K., Padmanabhan, H., Pritchard, J., Raccanelli, A., Riemer-Sørensen, S., Shao, L., Andrianomena, S., Athanassoula, E., Bacon, D., Barkana, R., Bertone, G., Bœhm, C., Bonvin, C., Bosma, A., Brüggen, M., Burigana, C., ... Gaensler, B. M. (2020). Fundamental physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia, [e002]. https://doi.org/10.1017/pasa.2019.42[details]
2019
Barack, L., Nissanke, S., Bertone, G., Gaggero, D., Hinderer, T., Kavanagh, B. J., Nelemans, G., Schmidt, P., Tauris, T. M., Volonteri, M., Jaodand, A., Nichols, D., Vercnocke, B., Williamson, A., & LIGO-Virgo collaboration (2019). Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 36(14), [143001]. https://doi.org/10.1088/1361-6382/ab0587[details]
Bertone, G., Coogan, A. M., Gaggero, D., Kavanagh, B. J., & Weniger, C. (2019). Primordial black holes as silver bullets for new physics at the weak scale. Physical Review D, 100(12), [123013]. https://doi.org/10.1103/PhysRevD.100.123013[details]
Bertone, G., Deisenroth, M. P., Kim, J. S., Liem, S., Ruiz de Austri, R., & Welling, M. (2019). Accelerating the BSM interpretation of LHC data with machine learning. Physics of the Dark Universe, 24, [100293]. https://doi.org/10.1016/j.dark.2019.100293[details]
Manshanden, J., Gaggero, D., Bertone, G., Connors, R. M. T., & Ricotti, M. (2019). Multi-wavelength astronomical searches for primordial black holes. Journal of Cosmology and Astroparticle Physics, 2019(6), [26]. https://doi.org/10.1088/1475-7516/2019/06/026[details]
Banik, N., Bertone, G., Bovy, J., & Bozorgnia, N. (2018). Probing the nature of dark matter particles with stellar streams. Journal of Cosmology and Astroparticle Physics, 2018(7), [061]. https://doi.org/10.1088/1475-7516/2018/07/061[details]
Bertone, G., Bozorgnia, N., Kim, J. S., Liem, S., McCabe, C., Otten, S., & Ruiz de Austri, R. (2018). Identifying WIMP dark matter from particle and astroparticle data. Journal of Cosmology and Astroparticle Physics, 2018(3), [026]. https://doi.org/10.1088/1475-7516/2018/03/026[details]
Kavanagh, B. J., Gaggero, D., & Bertone, G. (2018). Merger rate of a subdominant population of primordial black holes. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 98(2), [023536]. https://doi.org/10.1103/PhysRevD.98.023536[details]
Sivertsson, S., Silverwood, H., Read, J. I., Bertone, G., & Steger, P. (2018). The local dark matter density from SDSS-SEGUE G-dwarfs. Monthly Notices of the Royal Astronomical Society, 478(2), 1677-1693. https://doi.org/10.1093/mnras/sty977[details]
Bozorgnia, N., & Bertone, G. (2017). Implications of hydrodynamical simulations for the interpretation of direct dark matter searches. International Journal of Modern Physics A, 32(21), [1730016]. https://doi.org/10.1142/S0217751X17300162[details]
Bozorgnia, N., Calore, F., Schaller, M., Lovell, M., Bertone, G., Frenk, C. S., Crain, R. A., Navarro, J. F., Schaye, J., & Theuns, T. (2017). The local dark matter distribution from hydrodynamic simulations. In Y. Kim, A. Lindner, & Y. K. Semertzidis (Eds.), Proceedings of the 12th Patras Workshop on Axions, WIMPs and WISPs, PATRAS 2016: June 20-24, 2016 : Jeju Island, South Korea (pp. 14-17). Verlag Deutsches Elektronen-Synchrotron. https://doi.org/10.3204/DESY-PROC-2009-03/Bozorgnia_Nassim[details]
Gaggero, D., Bertone, G., Calore, F., Connors, R. M. T., Lovell, M., Markoff, S., & Storm, E. (2017). Searching for Primordial Black Holes in the Radio and X-Ray Sky. Physical Review Letters, 118(24), [241101]. https://doi.org/10.1103/PhysRevLett.118.241101[details]
Hees, A., Famaey, B., & Bertone, G. (2017). Emergent gravity in galaxies and in the Solar System. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 95(6), [064019]. https://doi.org/10.1103/PhysRevD.95.064019[details]
Bertone, G., Calore, F., Caron, S., Ruiz, R., Kim, J. S., Trotta, R., & Weniger, C. (2016). Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments. Journal of Cosmology and Astroparticle Physics, 2016(4), [037]. https://doi.org/10.1088/1475-7516/2016/04/037[details]
Bozorgnia, N., Calore, F., Schaller, M., Lovell, M., Bertone, G., Frenk, C. S., Crain, R. A., Navarro, J. F., Schaye, J., & Theuns, T. (2016). Predictions of hydrodynamic simulations for direct dark matter detection. Journal of Physics: Conference Series, 718(4), [42007]. https://doi.org/10.1088/1742-6596/718/4/042007[details]
Bozorgnia, N., Calore, F., Schaller, M., Lovell, M., Bertone, G., Frenk, C. S., Crain, R. A., Navarro, J. F., Schaye, J., & Theuns, T. (2016). Simulated Milky Way analogues: implications for dark matter direct searches. Journal of Cosmology and Astroparticle Physics, 2016(5), [24]. https://doi.org/10.1088/1475-7516/2016/05/024[details]
Calore, F., Bozorgnia, N., Lovell, M., Bertone, G., Schaller, M., Frenk, C. S., Crain, R. A., Schaye, J., Theuns, T., & Trayford, J. W. (2016). The Fermi GeV excess: Challenges for the dark matter interpretation. Journal of Physics: Conference Series, 718(4), [42010]. https://doi.org/10.1088/1742-6596/718/4/042010[details]
Liem, S., Bertone, G., Calore, F., Ruiz de Austri, R., Tait, T. M. P., Trotta, R., & Weniger, C. (2016). Effective field theory of dark matter: a global analysis. The Journal of High Energy Physics, 2016(9), [77]. https://doi.org/10.1007/JHEP09(2016)077[details]
Schoonenberg, D., Gaskins, J., Bertone, G., & Diemand, J. (2016). Dark matter subhalos and unidentified sources in the Fermi 3FGL source catalog. Journal of Cosmology and Astroparticle Physics, 2016(5), [028]. https://doi.org/10.1088/1475-7516/2016/05/028[details]
Silverwood, H., Sivertsson, S., Steger, P., Read, J. I., & Bertone, G. (2016). A non-parametric method for measuring the local dark matter density. Monthly Notices of the Royal Astronomical Society, 459(4), 4191-4208. https://doi.org/10.1093/mnras/stw917[details]
Calore, F., Bozorgnia, N., Lovell, M., Bertone, G., Schaller, M., Frenk, C. S., Crain, R. A., Schaye, J., Theuns, T., & Trayford, J. W. (2015). Simulated Milky Way analogues: implications for dark matter indirect searches. Journal of Cosmology and Astroparticle Physics, 2015(12), [53]. https://doi.org/10.1088/1475-7516/2015/12/053[details]
Ibarra, A., Lamperstorfer, A. S., López-Gehler, S., Pato, M., & Bertone, G. (2015). On the sensitivity of CTA to gamma-ray boxes from multi-TeV dark matter. Journal of Cosmology and Astroparticle Physics, 2015(9), [048]. https://doi.org/10.1088/1475-7516/2015/09/048[details]
Iocco, F., Pato, M., & Bertone, G. (2015). Testing modified Newtonian dynamics in the Milky Way. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 92(8), [084046]. https://doi.org/10.1103/PhysRevD.92.084046[details]
Lovell, M. R., Bertone, G., Boyarsky, A., Jenkins, A., & Ruchayskiy, O. (2015). Decaying dark matter: the case for a deep X-ray observation of Draco. Monthly Notices of the Royal Astronomical Society, 451(2), 1573-1585. https://doi.org/10.1093/mnras/stv963[details]
Pato, M., Iocco, F., & Bertone, G. (2015). Dynamical constraints on the dark matter distribution in the Milky Way. Journal of Cosmology and Astroparticle Physics, 2015(12), [001]. https://doi.org/10.1088/1475-7516/2015/12/001
Schaller, M., Frenk, C. S., Theuns, T., Calore, F., Bertone, G., Bozorgnia, N., Crain, R. A., Fattahi, A., Navarro, J. F., Sawala, T., & Schaye, J. (2015). Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes. Monthly Notices of the Royal Astronomical Society, 455(4), 4442-44451. https://doi.org/10.1093/mnras/stv2667[details]
Silverwood, H., Weniger, C., Scott, P., & Bertone, G. (2015). A realistic assessment of the CTA sensitivity to dark matter annihilation. Journal of Cosmology and Astroparticle Physics, 2015(3), [055]. https://doi.org/10.1088/1475-7516/2015/03/055[details]
Wanders, M., Bertone, G., Volonteri, M., & Weniger, C. (2015). No WIMP mini-spikes in dwarf spheroidal galaxies. Journal of Cosmology and Astroparticle Physics, 2015(4), [004]. https://doi.org/10.1088/1475-7516/2015/04/004[details]
2014
Cabrera, M. E., Casas, A., de Austri, R. R., & Bertone, G. (2014). LHC and dark matter phenomenology of the NUGHM. Journal of High Energy Physics, 2014(12), [114]. https://doi.org/10.1007/JHEP12(2014)114
Strege, C., Bertone, G., Besjes, G. J., Caron, S., Ruiz de Austri, R., Strubig, A., & Trotta, R. (2014). Profile likelihood maps of a 15-dimensional MSSM. The Journal of High Energy Physics, 2014(9), [081]. https://doi.org/10.1007/JHEP09%282014%29081[details]
Anderhalden, D., Schneider, A., Macciò, A. V., Diemand, J., & Bertone, G. (2013). Hints on the Nature of Dark Matter from the Properties of Milky Way Satellites. Journal of Cosmology and Astroparticle Physics, 1303, 014. https://doi.org/10.1088/1475-7516/2013/03/014[details]
Arina, C., Bertone, G., & Silverwood, H. (2013). Complementarity of direct and indirect Dark Matter detection experiments. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 88(1), [013002]. https://doi.org/10.1103/PhysRevD.88.013002[details]
Pato, M., Strigari, L. E., Trotta, R., & Bertone, G. (2013). Taming astrophysical bias in direct dark matter searches. Journal of Cosmology and Astroparticle Physics, 2013(febr), 041. https://doi.org/10.1088/1475-7516/2013/02/041[details]
Strege, C., Bertone, G., Feroz, F., Fornasa, M., Ruiz de Austri, R., & Trotta, R. (2013). Global Fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints. Journal of Cosmology and Astroparticle Physics, 1304, 013. https://doi.org/10.1088/1475-7516/2013/04/013[details]
Weniger, C., Serpico, P. D., Iocco, F., & Bertone, G. (2013). CMB bounds on dark matter annihilation: Nucleon energy losses after recombination. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 87(12), [123008]. https://doi.org/10.1103/PhysRevD.87.123008[details]
Anderhalden, D., Diemand, J., Bertone, G., Macciò, A. V., & Schneider, A. (2012). The Galactic Halo in Mixed Dark Matter Cosmologies. Journal of Cosmology and Astroparticle Physics, 1210(10), 047. https://doi.org/10.1088/1475-7516/2012/10/047[details]
Bergström, L., Bertone, G., Conrad, J., Farnier, C., & Weniger, C. (2012). Investigating Gamma-Ray Lines from Dark Matter with Future Observatories. Journal of Cosmology and Astroparticle Physics, 1211(11), 025. https://doi.org/10.1088/1475-7516/2012/11/025[details]
Strege, C., Trotta, F., Bertone, G., Peter, A. H. G., & Scott, P. (2012). Fundamental statistical limitations of future dark matter direct detection experiments. Physical Review D. Particles, Fields, Gravitation, and Cosmology, 86(2), 023507. https://doi.org/10.1103/PhysRevD.86.023507[details]
Serpico, P. D., & Bertone, G. (2010). Astrophysical limitations to the identification of dark matter: Indirect neutrino signals vis-à-vis direct detection recoil rates. Physical Review D - Particles, Fields, Gravitation and Cosmology, 82(6), [063505]. https://doi.org/10.1103/PhysRevD.82.063505
Taoso, M., Iocco, F., Meynet, G., Bertone, G., & Eggenberger, P. (2010). Effect of low mass dark matter particles on the Sun. Physical Review D - Particles, Fields, Gravitation and Cosmology, 82(8), [083509]. https://doi.org/10.1103/PhysRevD.82.083509
2016
Ibarra, A., Lamperstorfer, A. S., López Gehler, S., Pato, M., & Bertone, G. (2016). Erratum: On the sensitivity of CTA to gamma-ray boxes from multi-TeV dark matter. Journal of Cosmology and Astroparticle Physics, 2016(6), [E02]. https://doi.org/10.1088/1475-7516/2016/06/E02
Membership / relevant position
Bertone, G. (2019-2024). Director of the European Consortium for Astroparticle Theory, European Consortium for Astroparticle Theory. http://EUCAPT.ORG
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.