For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
soup
How do our brains perceive the impulses that our tongue and palate receive when tasting a liquid food like soup?

Our capacities to appreciate the intensity of sound, light, or textures, are crucial for our interaction with the physical world around us. To allow us to experience a wide range of sound or light intensities, our senses soften the intensity of such stimuli when they are strong, and strengthen them when they are weak. However, the precise way in which the intensity of stimuli is related to their perceived strength is still a subject of debate among scientists.

Logarithmic perception

For sound, for example, we can hear very soft noises and resist very loud ones. What this boils down to mathematically is that the scale of perception is a so-called logarithmic scale. A team of researchers from the University of Amsterdam, Unilever, and Wageningen University & Research has now shown that the perceived “thickness” of liquid food products also depends logarithmically on the stimulus, just like the perception we receive from our eyes and ears.

The physics of the way substances flow is called rheology. The researchers modelled the swallowing process and compared the rheology of various liquid bouillons to their subjective perception, obtained from tasting by a panel. In this way, they found that a product which was physically ten times thicker, was only perceived as two times 'thicker'.

The finding of a logarithmic relation confirms the so-called Weber-Fechner law in biosensing. Knowing how our mouths perceive the thickness of liquid foods will allow for a better prediction of the mouthfeel of foods and, hence, targeted design of good and tasty food products.

Publication

Predicting thickness perception of liquid food products from their non-Newtonian rheology. Antoine Deblais, Elyn den Hollander, Claire Boucon, Annelies E. Blok, Bastiaan Veltkamp, Panayiotis Voudouris, Peter Versluis, Hyun-Jung Kim, Michel Mellema, Markus Stieger, Daniel Bonn and Krassimir P. Velikov. Nature Communications 12 (2021), 6328.