dr. R. (Rene) Gerritsma


  • Faculty of Science
    Van der Waals-Zeeman Instituut
  • Visiting address
    Science Park A
    Science Park 904  Amsterdam
  • Postal address:
    Postbus  94485
    1090 GL  Amsterdam
  • R.Gerritsma@uva.nl

My peronal webpage

  1. Trapped ions in Rydberg-dressed atomic gasesT. Secker, N. Ewald, J. Joger, H. Fürst, T. Feldker and R. Gerritsma Phys. Rev. Lett. 118, 263201 (2017).
  2. Controlled long-range interactions between Rydberg atoms and ions, T. Secker, R. Gerritsma, A. W. Glaetzle, and A. Negretti Phys. Rev. A 94, 013420 (2016).
  3. Impact of many-body correlations on the dynamics of an ion-controlled bosonic Josephson junction, J. M. Schurer, R. Gerritsma, P. Schmelcher, and A. Negretti Phys. Rev. A 93, 063602 (2016).
  4. Rydberg excitation of a single trapped ion, T. Feldker, P. Bachor, M. Stappel, D. Kolbe, R. Gerritsma, J. Walz and F. Schmidt-Kaler, Phys. Rev. Lett. 115, 173001 (2015).
  5. Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal, R. Nath, M. Dalmonte, A. W. Glaetzle, P. Zoller, F. Schmidt-Kaler and R. Gerritsma, New J. Phys. 17 (2015) 065018.
  6. Generalized Kronig-Penney model for ultracold atomic quantum systems, A. Negretti, R. Gerritsma, Z. Idziaszek, F. Schmidt-Kaler, and T. Calarco, Phys. Rev. B 90, 155426 (2014).
  7. Quantum dynamics of an atomic double-well system interacting with a trapped ion, J. Joger, A. Negretti and R. Gerritsma, Phys. Rev. A 89, 063621 (2014).
  8. Emulating solid-state physics with a hybrid system of ultracold ions and atoms, U. Bissbort, D. Cocks, A. Negretti, Z. Idziaszek, T. Calarco, F. Schmidt-Kaler, W. Hofstetter and R. Gerritsma, Physical Review Letters 111, 080501 (2013).
  9. Entanglement-enhanced detection of single-photon scattering events, C. Hempel, B. P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt, C. F. Roos, Nature Photonics 7, 630, (2013).
  10. Entangled states of trapped ions allow measuring the magnetic field gradient of a single atomic spin, F. Schmidt-Kaler and R. Gerritsma, Europhysics Letters 99, 53001 (2012).
  11. Bosonic Josephson Junction Controlled by a Single Trapped Ion, R. Gerritsma, A. Negretti, H. Doerk, Z. Idziaszek, T. Calarco and F. Schmidt-Kaler, Physical Review Letters 109, 080402 (2012).
  12. Universal digital quantum simulation with trapped ions, B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt and C. F. Roos, Science 334, 57 (2011).
  13. Quantum Simulation of Quantum Field Theories in Trapped Ions, J. Casanova, L. Lamata, I. L. Egusquiza, R. Gerritsma, C. F. Roos, J. J. García-Ripoll and E. Solano, Phys. Rev. Lett. 107, 260501 (2011).
  14. Quantum simulation of the Majorana equation and unphysical operations, J. Casanova, C. Sabin, J. Leon, I. L. Egusquiza, R. Gerritsma, C. F. Roos, J. J. García-Ripoll and E. Solano, Phys. Rev. X 1, 021018 (2011).
  15. Relativistic quantum mechanics with trapped ions, L. Lamata, J. Casanova, R. Gerritsma, C. F. Roos, J. J. García-Ripoll and E. Solano, New. J. Phys. 13, 095003 (2011).
  16. Quantum simulation of the Klein paradox with trapped ions, R. Gerritsma, B. Lanyon, G. Kirchmair, F. Zähringer, C. Hempel, J. Casanova, J. J. García-Ripoll, E. Solano, R. Blatt and C. F. Roos, Phys. Rev. Lett. 106, 060503 (2011).
  17. Klein tunneling and Dirac potentials in trapped ions, J. Casanova, J. J. García-Ripoll, R. Gerritsma, C. F. Roos and E. Solano, Phys. Rev. A 82, 020101(R) (2010).
  18. Compatibility and noncontextuality for sequential measurements, O. Gühne, M. Kleinmann, A. Cabello, J.-A. Larsson, G. Kirchmair, F. Zähringer, R. Gerritsma and C.F. Roos, Phys. Rev. A 81, 022121 (2010).
  19. Realization of a quantum walk with one and two trapped ions, F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt and C. F. Roos, Phys. Rev. Lett. 104, 100503 (2010).
  20. Quantum simulation of the Dirac equation, R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt and C. F. Roos, Nature 463, 68 (2010).
  21. State-independent experimental test of quantum contextuality, G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt and C. F. Roos, Nature 460, 494 (2009).
  22. High fidelity entanglement of 43Ca+ hyperfine clock states, G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C. F. Roos and R. Blatt, Phys. Rev. A 79, 020304(R) (2009).
  23. Deterministic entanglement of ions in thermal states of motion, G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C. F. Roos and R. Blatt, New J. Phys. 11, 023002 (2009).
  24. Two-dimensional array of microtraps with atomic shift register on a chip, S. Whitlock, R. Gerritsma, T. Fernholz and R. J. C. Spreeuw, New J. Phys. 11, 023021 (2009).
  25. Precision measurement of the branching fractions of the 4P3/2 decay of Ca II, R. Gerritsma, G. Kirchmair, F. Zähringer, J. Benhelm, R. Blatt and C. F. Roos, Eur. Phys. J. D 50, 13 (2008).
  26. Fully permanent magnet atom chip for Bose- Einstein condensation, T. Fernholz, R. Gerritsma, S. Whitlock, I. Barb and R. J. C. Spreeuw, Phys. Rev. A 77, 033409 (2008).
  27. Lattice of microtraps for ultracold atoms based on patterned magnetic films, R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J.- U. Thiele, J. B. Goedkoop and R. J. C. Spreeuw, Phys. Rev. A 76, 033408 (2007).
  28. Fabrication of magnetic atom chips based on FePt, Y. T. Xing, I. Barb, R. Gerritsma, R. J. C. Spreeuw, H. Luigjes, Q.F. Xiao, C. Rétif and J. B. Goedkoop, J. Magn. Magn. Mater. 313, 192 (2007).
  29. Dynamically controlled toroidal and ring-shaped magnetic traps, T. Fernholz, R. Gerritsma, P. Krüger and R. J. C. Spreeuw, Phys. Rev. A 75, 063406 (2007).
  30. Topological constraints on magnetostatic traps, R. Gerritsma and R. J. C. Spreeuw, Phys. Rev. A 74, 043405 (2006).
  31. Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization, I. Barb, R. Gerritsma, Y.T. Xing, J. B. Goedkoop and R. J. C. Spreeuw, Eur. Phys. J. D 35, 75 (2005).

 

Crystal of Yb+ ions

In the group Hybrid atom-ion quantum systems, we study mixtures of cold neutral atoms interacting with trapped ions. Our research group started on December 1 2013 in Mainz and we moved to Amsterdam in March 2016.

Ultracold atom-ion mixtures

Experiments with ultracold atoms and ions allow us to study quantum phenomena in the laboratory, such as Bose-Einstein condensation, quantum entanglement and quantum phase transitions. Although a lot of work has been done on the systems of ions and atoms separately, combining the two and studying their interactions in the quantum regime is a relatively new field [1-3]. We are currently building up a new experiment that is aimed at studying the interaction between 174Yb+ ions and an ultracold gas of fermionic Li atoms. Although interactions between single ions and atoms have been studied before, our experiment is new in that it combines two species of atoms and ions that have a very large mass ratio (~29). It has been shown theoretically [4] that such a combination should allow reaching lower temperatures such that quantum phenomena can be studied. Reaching down to these low temperatures should also allow studying Feshbach resonances between atoms and ions.

We also aim at studying ultracold atoms interacting with crystals of trapped ions. Since Li offers a fermionic isotope, the system has stunning similarities to a natural crystalline solid and should feature solid state phenomena such as fermion-phonon coupling and quantum phase transitions [I]. This could allow us  to use the system as a quantum simulator of solids and to study the dynamics of many-body atom-ion systems.

Figure: A string of ions in a Paul trap is overlapped with a cloud of ultracold Li atoms trapped by a  laser beam.

For an overview of the field of hybrid atom-ion systems you can have a look at this nice review paper from the group of Johannes Hecker Denschlag.

Literature

[1] A. Grier, M. Cetina, F. Orucevic and V. Vuletic, Phys. Rev. Lett. 102, 223201 (2009).

[2] Christoph Zipkes, Stefan Palzer, Carlo Sias & Michael Köhl, Nature 464, 388-391 (2010).

[3] Stefan Schmidt, Arne Härter and Johannes Hecker Denschlag, Phys. Rev. Lett. 105, 133202 (2010).

[4]  M. Cetina, A. Grier and V. Vuletic, Phys. Rev. Lett. 109, 253201 (2012).

Funding

Our funding is provided by the European Research Counsil via the ERC Starting Grant Hybrid atom-ion Quantum Systems and by the Netherlands Scientific Organization via the Vidi grant Trapped ions in strongly polarizable atomic media.

2016

  • Schurer, J. M., Gerritsma, R., Schmelcher, P., & Negretti, A. (2016). Impact of many-body correlations on the dynamics of an ion-controlled bosonic Josephson junction. Physical Review A, 93(6), 063602. DOI: 10.1103/PhysRevA.93.063602 [details]
  • Secker, T., Gerritsma, R., Glaetzle, A. W., & Negretti, A. (2016). Controlled long-range interactions between Rydberg atoms and ions. Physical Review A - Atomic, Molecular, and Optical Physics, 94(1). DOI: 10.1103/PhysRevA.94.013420 [details]

2009

  • Whitlock, S., Gerritsma, R., Fernholz, T., & Spreeuw, R. J. C. (2009). Two-dimensional array of microtraps with atomic shift register on a chip. New Journal of Physics, 11(2), 023021. DOI: 10.1088/1367-2630/11/2/023021 [details] [PDF]

2008

  • Fernholz, T., Gerritsma, R., Whitlock, S., Barb, I., & Spreeuw, R. J. C. (2008). Fully permanent magnet atom chip for Bose-Einstein condensation. Physical Review A, 77(3), 033409. DOI: 10.1103/PhysRevA.77.033409 [details]

2008

  • Gerritsma, R., van Amerongen, A., van Es, J-J., Whitlock, S., van Druten, N. J., & Spreeuw, R. (2008). Atoomchips. Nederlands Tijdschrift voor Natuurkunde, 74(3), 82-85. [details]
This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications.
  • No ancillary activities

edit contact information edit tabs